number, real - перевод на арабский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

number, real - перевод на арабский

PICTURE OF A GRADUATED STRAIGHT LINE THAT SERVES AS ABSTRACTION FOR REAL NUMBERS; COORDINATE SYSTEM IN ONE-DIMENSIONAL SPACE
Real line; The real number line; Real number line; Real axis; Number axis; Numberline; Number lines; Linear coordinate system
  • metric]] on the real line is [[absolute difference]].
  • The bijection between points on the real line and vectors
  • ''a''}}
  • Each set on the real number line has a supremum.
  • [a,b]}}.
  • The order of the natural numbers shown on the number line

number, real      
عدد حقيقي (أي عدد يمثل قيمة حقيقية)
real number         
  • A symbol for the set of real numbers
  • Real numbers <math>(\mathbb{R})</math> include the rational numbers <math>(\mathbb{Q})</math>, which include the integers <math>(\mathbb{Z})</math>, which in turn include the natural numbers <math>(\mathbb{N})</math>
  • Real numbers can be thought of as all points on a number line
QUANTITY ALONG A CONTINUOUS LINE
Real numbers; Real Numbers; Bounded real-valued data; Real number field; Real (numbers); ℝ; Field of reals; Axiomatic real number; Complete ordered field; The complete ordered field; Reall numbers; Real number system; Real (number); Real Number System; Set of real numbers; R (math); R (maths)
عدد حقيقى عدد حقيقى
real number         
  • A symbol for the set of real numbers
  • Real numbers <math>(\mathbb{R})</math> include the rational numbers <math>(\mathbb{Q})</math>, which include the integers <math>(\mathbb{Z})</math>, which in turn include the natural numbers <math>(\mathbb{N})</math>
  • Real numbers can be thought of as all points on a number line
QUANTITY ALONG A CONTINUOUS LINE
Real numbers; Real Numbers; Bounded real-valued data; Real number field; Real (numbers); ℝ; Field of reals; Axiomatic real number; Complete ordered field; The complete ordered field; Reall numbers; Real number system; Real (number); Real Number System; Set of real numbers; R (math); R (maths)
‎ عَدَدٌ حقيقيٌّ‎

Определение

minus infinity
The most negative value, not necessarily or even usually the simple negation of plus infinity. In N bit twos-complement arithmetic, infinity is 2^(N-1) - 1 but minus infinity is -(2^(N-1)), not -(2^(N-1) - 1).

Википедия

Number line

In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a point.

The integers are often shown as specially-marked points evenly spaced on the line. Although the image only shows the integers from –3 to 3, the line includes all real numbers, continuing forever in each direction, and also numbers that are between the integers. It is often used as an aid in teaching simple addition and subtraction, especially involving negative numbers.

In advanced mathematics, the number line can be called as a real line or real number line, formally defined as the set R of all real numbers. It is viewed as a geometric space, namely the real coordinate space of dimension one, or the Euclidean space of dimension one – the Euclidean line. It can also be thought of as a vector space (or affine space), a metric space, a topological space, a measure space, or a linear continuum.

Just like the set of real numbers, the real line is usually denoted by the symbol R (or alternatively, R {\displaystyle \mathbb {R} } , the letter “R” in blackboard bold). However, it is sometimes denoted R1 or E1 in order to emphasize its role as the first real space or first Euclidean space.